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WITH THE ELASTIC SPACE

WILLIAM V. BREWERT

Department of Mechanical Engineering, University of Tulsa, Tulsa, Oklahoma
and

ROBERT WM. LITTLE

Department of Metallurgy, Mechanics and Materials Science, Michigan State University,
East Lansing, Michigan

Abstract—The problem to be examined is that of a circular disk or plate attached to the wall of a cylindrical
hole in an infinite solid. The interface boundary stress distribution will be compatible with simple plate theory
and the slope and displacements are matched to the wall where the midplane of the plate intersects the solid.
The problem is solved for any axisymmetric loading of a plate of uniform thickness and material parameters.
This method can be easily extended to any axisymmetric plate solution without midplane forces. The material
parameters in the plate and the supporting solid can be specified independently. In the specific examples included,
plate deflections for a rigid wall assumption as opposed to a wall and plate of the same material never differ by
less than 200 %,. There is little reason to believe that the trends indicated by the examples would change signifi-
cantly for other usual loadings and geometries within the scope of the problem.

NOTATION
A(w), Blw) arbitrary coefficient functions of solutions to V*Z(r, z) = 0
a, b radius and half-thickness of the undeformed plate
¢ = 2(1 —v) group of constants appearing frequently
2E b?
D = - plate modulus
3(1—v3)
E.v elastic material parameters
E,.v, elastic material parameters for the circular plate
Ey. vy elastic material parameters for the wall supporting the plate

vector potential function defined by Galerkin

E
“¥__ elastic modulus in shear for the wall

G or Gy = -
21 +vy)
D I B
Iiry = f ;J‘ 6J Ej pqtp)dp df do dy an integral appearing in the general solution for the plate
07rvYo [ 0
displacement w(r)
d
15(r) = d7]l(r)
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| i d
alr) =7 szm)

K, (x) modified Bessel functions of the second kind and order n

Kix) = Ky(x)/K,(x) group of terms appearing frequently

M (r) moment resultant per unit circumferential length applied in the positive (-direction (right-
hand-rule} to the positive r-face of a differential element of plate material (dr) x (r d) x (2b)

0,r) shear resultant per unit circumferential length applied in the positive z-direction to the positive
r-face of a differential element of plate material (dr) x (r dfl) x (2b)

g(r) plate load per unit area applied in the positive z-direction to the z-face of a differential element
of plate material (dr) x (r d8) x (2b)

tr.0.2) cylindrical coordinates

S maximum g, on the common boundary between the plate and the supporting wall

T maximum 7,, on the common boundary between the plate and the supporting wall

Ss(ry z), stlr, o) ts(r, 2), te(r, 2), us(r, 2), utr, 2), uzs(r. ), uzt(r. z), wsir. ), witr. =)

infinite integrals appearing in the displacement solution of the elastic solid

n = (u,. ry. w) displacement vector in the elastic solid

ulr. z) displacement of the elastic solid in the r-direction

vy = 0 displacement of the elastic solid in the 0 direction

wir) displacement of the plate in the z-direction

wir, 2) displacement of the elastic solid in the z-direction

Zir.z) component of Galerkin's vector potential F in the z-direction .. also referred to as the Love

stram function

sin{x) \
blx) = —cos{x) and Y(x) = x*(K?*(x)~1)—¢ arc groups of terms appearing frequently in the

displacement solutions
a,.a4.0_,¢tc.  tensile stress in the indicated directions
Tyes Trgs Tys shear stress on the faces and in the directions indicated where 1, = 7, for all cases considered
0] separation parameter in the solution of V*Z = ()

1. INTRODUCTION

IT 18 easily recognized that the clasticity of a solid supporting wall may contribute sig-
nificantly to the deflections of the thin member which is attached to it. The assumption
that the wall is rigid may lead to sizeable errors depending upon the relative material proper-
ties of the wall and the member. The interaction problems of beams and plates with support-
ing walls are the most common in practice and the beam problem has received considerable
attention in the past. The problem is usually modeled in the plane elasticity sense either by
plane stress or plane strain, and is considered as interacting with the elastic half-plane.
This problem has been investigated independently by Weber [1] and Muskhelishvili {2],
each employing different boundary conditions at the interface. Weber modeled the problem
by applying to the half-plane the linear axial tensile stress distribution obtained by simple
beam theory. Muskhelishvili, however, applied a linear axial displacement condition at the
interface. O’Donnell [3] compared these solutions and noted that the displacements due
to the rotation differed by only 159/ even though the stress in the case of the displacement
condition is infinite at the edge. O’Donnell chose a cubic stress distribution as a more
realistic condition and obtained results between the other two. He also investigated the
effect of shear by applying a constant shear to the wall and experimentally verified these
results.

More recently, Cook [4] generalized the plane-stress beam problem to infinitely many
evenly spaced cantilever beams intersecting a supporting beam. Each beam was loaded
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with the same moment and the problem was solved numerically by the finite-element
method for a range of relevant dimensional ratios.

An investigation of the non-plane intersection problem of a shaft of circular cross-
section with the half-space has been conducted by Brown and Hall [5]. The axial tensile
stress from simple beam theory is applied at the interface and the deflections are obtained
and compared with experimental results. The effects of shear stresses were not considered
in this investigation.

2. FORMULATION OF THE PROBLEM

The problem to be investigated here is that of a circular disk or plate attached to the
wall of a cylindrical hole in an infinite solid. Only axially-symmetric loadings will be
considered so that the dependency upon the angle may be ignored. The disk and the shaft
will share the same axis of symmetry, the z axis. The undeformed disk will occupy the
space —b < z < +band 0 < r < a. The elastic space will be described by classical three-
dimensional elasticity theory for an isotropic homogeneous medium.

The problem of a shaft in an infinite solid has been treated for several simple loadings:
semi-infinite hydrostatic pressure [6]: localized hydrostatic pressure [7]; localized shear
[8]. More recently Blenkarn and Wilhoit {9] applied a localized hydrostatic pressure to
the entrance of a hole in a semi-infinite solid.

Plate theory will be used for the disk and the effect of the midplane forces in the disk
will be ignored.

The interface boundary conditions will be compatible to the stress distribution of
simple plate theory and are as follows:

olr=a,—b<z<b)=258z/b (1)
T,r=a, —b <z <b)=T(1—-2z%/b? (2)

where S and T are constants to be determined by the loading on the plate.

Since only the stresses are specified at the interface and the displacement conditions
will have to be approximated, we will expect errors in the local area of the interface. Based
upon Saint Venant’s Principle and O’Donnell’s findings, we do not expect the gross
deflections of the plate to be greatly altered by this assumption.

3. INFINITE SOLID

The Navier equation for the elasto-static problem without body forces is

Viu+

5 VV.w=o. (3)

Using the Galerkin vector defined as follows
2Gu = 2(1 —v)V2F—V(V . F) (4)

the Navier equation reduces to a biharmonic vector equation in terms of the Galerkin
vector.

V2V3F = (. (5)
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For the case of axial symmetry, only the z-component of the Galerkin vector is needed which
is known as the Love strain function.

F =10,0, Z(r, 2} {6)

The displacements and stresses may be expressed in terms of Z as follows:

L:)Z
2Gw = [2(1~v)V2—5?JZ
2Gv, =0

&%z
26U, = —~ 2
tr oréz
¢ > 4
G'L,:gg (2—‘\?)‘7 _6_2- VA

(N

Noting that the boundary conditions imply that only the even functions in z need to be
considered, the solution of the biharmonic equation for Z may be taken in the form

Z = J“" \/(_%) il [A(o))Ko(a)r)+B(w)er1(wr)] cos(wz) dw (8)
0 n} w

where Ky(wr)and K (wr) are the modified Bessel functions of the second kind. This solution
exhibits the property that it decays as r approaches infinity and is even in z.

The interface boundary conditions, equations (1) and (2), take the form

ff\/(i) [A(m)(Kg(coaHézKl(wa}) ——B(w)([l —2v}K0(a)a)—wathwa;H sin{fwz)dw
O .

[Sz/b —h<z< +b

10 —b>z>b

o / -
j / (2) [ — A{m)K {lwa) + B(w)( 201 —vIK (wa)— waKO(ma)) } cos(wo)dw

o V7
(T =22/ —b<z<bh
10 ~b>z>b

(9



Interaction of an axisymmetrically loaded plate with the elastic space 291

These two equations may be solved for the unknown functions A(w) and B(w) by use of the
Fourier sine and cosine transforms

Slw) = J:O \/ (g) F(z) sin(wz)dz

2(e) = f \/

The functions 4 and B become

Alw) = \/(%)ﬂ[ Sa(waK(wa)——c)-}- 2Ta (wzaz —{c— 1)coaK(th))]

a3

(10)

3N

-—) G (z) cos(wz)dz.

) Ylwa)K (wa) w?ab
2} dteb) 2Ta (1
B(w) = _\/(;)_—_——nﬁ(wa)Kl(wa)[Sd.F oab (l +a)aK(coa)”

where use has been made of the symbols

_ Ko(x) _sin(x)
K(x) = K.) ¢x) = —~ cos(x)
e=2l—v)

Y(x) = [x*(K*(x)—1)—c]

to simplify the notation.

When expressions (11) for 4(w) and B(w) are substituted into the strain function (8)
and it in turn is substituted into the general expressions (7), the resulting equations (12)
shown below are valid everywhere in the elastic solid.

a ™ Plwb)K,(wr)

Gwlir, z) = S{; . W [(coaK{wa)+c)K(wr)~wr] cos(wz) dm}

2 [ Hlwb)K,(wr) 2
+T{E . m Umza —(c~1)waK(wa))K(6W)

- ( 1+ waK(wa)) (cur - 2cK(wr)H cos(wz) dw}

Gu,r, z) = S{;a ? w—; [(waK(a)a)~c) ——er(wr):| sin{wz) dw}

n Jo oylwa)K (wa

=2 (° ¢P(wb)K,(wr)
+ T{E P VeaK () [(wzaz —(c— l)waK(wa))

— ( 1 + waK{wa) )corK (mr)] sin(ewz) da)}
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ou, —a [* $wh)K
G 2 (r,z) = S{n—a . %‘ﬁ% I:(a)aK(wa—c )— er(wrﬂ cos(wz) dw}

e

— ( 1+ waK(wa)) er(wr)] cos(wz) dw}
b)K .
a,(r,z) = S{ j M—f‘%(%a)%[ (waK(wa))(K(wr)-i—%) - (K(wr)+wr+£;)]
sin(wz) dw}

4 (7 Pwb)K (wr) 1
+ T{n_b o m[ (wzaz —(c— I)a)aK((ua)) (K(wr)+_a_);)

wr ] sin(wz) dw}

[a)aK(wa) - er(wr)] cos(wz) dw}

+ (1 +waK(a)a)) ((c ~ 1)K (wr)—

T,(r,2) = S{ - * P(wb)K i(cwr)

n Jo Y(wa)K,(wa)
(12)

41" ¢lwb)K,(wr) 2.2 1\
+ T{ b W[(w a (C 1)waK(a)a))

+{1+ waK(wa)) (c - er(wr)” cos(wz) dw} .

The integral quantities in the braces of equations (12) will be designated as indicated below
and are computed with the aid of a CDC 3600 digital computer.

Gw(r, z) = S{wsl(r, z)} + T{wi(r, z)}
Gu,(r, z) = Slus(r, 2)} + Tlutlr, z)}

= S{uzs(r, z)} + T{uzt(r, z)} (13)

o,(r, z) = S{ss(r, 2)} + T{st(r, 2)}
T,.(r, z) = S{ts(r, 2)} + T{ee(r, 2)}

A suitable numerical integration procedure was obtained from the Euler—-MacLauren
summation formula [10]. The integrals have decaying periodic behavior owing to the
dominance of sinusoidal elements for large values of w. It was noted that the successive
partial sums approximating the integral will exhibit maxima and minima for sufficiently
small intervals and that these values bound the desired value of the infinite integrals. As
the b/a ratio approaches zero, the numerical complexities of the problem increase greatly.
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3. CIRCULAR PLATE

The circular plate will be subjected to any axisymmetrical loading consistent with the
assumptions made so far in this development. The in-plane displacements will be considered
to be negligible and elementary plate theory will be used in the development. The interface
boundary conditions are obtained from matching the deflections and slopes of the midplane
of the plate to the appropriate deflections and slopes from the elastic solid and may be
stated as follows:

Plate Elastic solid
(a) wla) = wig, 0)
(b) d:'(r“} = - %‘ia, 0)
{c} MAa) = f ola, z)zdA
(d) Q.(a) = f 7,:(a. z) dA (14)

It may be noted that the linear plate theory does not permit us to match the deflections
at all points along the interface. We would expect that the accuracy of the solution will
improve for thinner plates and some estimate of the accuracy may be obtained by examining
the displacement match across the interface. The stress distribution in the interior of the
plate will improve in accuracy as we move away from the interface by Saint Venant’s
Principle.

The governing differential equation for the deflection of isotropic, homogeneous plates
is

DV*w(r) = ¢(r) (15)
where
2 Ep?

The shear and moment distributions are related to the deflection in the following manner
d

Q’ = - D—drvzw (16)
1

M, = -D[w,,+v~wr} (17)
r

Summing forces in the z direction to obtain shear at r = f, yields

8
0,8+ fo dp)pdp = 0

1 r#
T e —— d
Q ﬁj; palp)dp
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df1 d{ _dw(p
Ddﬁ[ﬁd}g(ﬂ )] ﬁf pqlp)dp

Assuming that the necessary functions are integrable over the range 0 < p < q then

Using equation (16)

2
Dwir) = Il(r)+A% +BIn(n+C

(18)

D‘-i—‘c-‘i’—(—l = I,(r )+Ar+33

where
rypro o gt
o= | »j 5] 5| patordpapasay
oYvo o BJo

Lo s

Conditions (14) are applied to specify quantities 4, C, S, T Bounded solutions at the
origin imply B = 0. Condition (14a) yields

I,(a)+A§+C - g[S{ws(a, 0)} + T{wt(a, 0)}]. (19)

Condition (14b) yields
Iz(a)+Aa+:(—;—D—[S{uzs(a, O)) + T{uzt(a, 0)}1. (20)

Condition (14c) yields
(1— )12(‘” (1+V)A— Lfa) = —b’S e

where

"1 B
Iy(r) = L 3 L pq(p) dp dp.

Condition (14d) yields T explicitly.

a

-3
= (22
T= 1 rq(r) dr )
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Equations (20) and (21) may be solved for S and 4 explicitly.

21, (@) —alsa)] + (1 +v)T{uzt(a, 0)}
S = (23)
gab3 - ~(1 +v){uzs(a, 0)}

[1(); = {uzs(a 0} += b’:llz(a)+ {{uzs(a 0} (a)+= b3T{uzt(a O)}}

A= 4)

gab3 —5(1 +v){uzs(a, 0)}
Equation (19) yields C

= é—)[S {wsla, 0)} + T{wt(a, 0)}]— Aé—;-— L@ (25)

4. ILLUSTRATIVE EXAMPLE

Further investigation would be awkward to carry out in general. The remaining text
will deal with specific loading, geometry and material parameters.

Let g(r) = g, a constant. The load g for constant loading may be considered as a multi-
plying factor in the expressions for w{r) and in this case is set at 1-0 for all numerical results.

For purposes of illustration, three plate geometries will be used. Two are well within the
bounds of thin plate theory and will have thickness to diameter ratios of 0-02 and 0-05.
The last will assume this ratio to be 0-10 where it is recognized that thin plate theory may
not be a good model for this case. For each of these ratios, eight ratios of elastic moduli of
the plate and wall will be used. This ratio E,/Ey, will range from 0 to 10 where 0 will rep-
resent the plate built into an inflexible wall and the present development reduces to the
classical solution for a clamped plate. A value of E,/Ey = oo does not exactly correspond
to a simply supported plate. In order to reduce the general result to the simply supported
case it is also necessary that terms involving T, maximum shear stress at the wall, be neglig-
ible compared to other surviving terms.

Each of the cases will be computed for a Poisson’s ratio of v = 0-25 in both the wall and
the plate, and also for v = 0-3 in both wall and plate, although this development does
allow values of v in the plate to differ from those in the wall.

Deflections w(r) of the mid-plane of the plate, together with corresponding maximum
stresses S and T at the wall, are displayed in Fig. 1.

For the particular loading g{(r) = g, a constant, the maximum deflection of a clamped
plate is w, = ga*/64D and for a simply supported plate is w, = [(5+v)/(1 +v)]ga*/64D.
The Ratio R; = wy/w, = 42 and 4-08 for v = 0-25 and v = 0-3 respectively. A correspond-
ing ratio R, for the deflections in Fig. 1 can be devised by subtracting the deflection of the
wall from the total deflection leaving only that due to deformation of the plate.

R, = [wyol0)—wola)]/we(0)

where w, o(r) is that deflection for E /E,, = 10and wy(0) = w, is the deflection for £ /E,, = 0
For the plates represented in Fig. 1, 3-9 < R, < 4-2 therefore one might conclude that
the deformation of the plate as E,/E, — 0 is similar to a simply supported plate. Larger
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Fic. 1. Plate displacements and the associated maximum stresses (S and T) at the interface between the plate and solid for the illustrative example.
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deflections are allowed mainly as a result of smaller restraint against rotation. It would
seem that the contribution of terms involving 7T, shear stress at the wall, is small, however it
must be remembered that T terms also increase the slope at the wall as well as the vertical
deflection. If the load distribution was moved toward the wall instead of being uniformiy
distributed these terms would be much more significant.

It is apparent that for each of these thickness/diameter ratios, the deflections wi(r)
based on an assumption of a rigid wall compared with deflections when using a wall and
plate of the same material, never differ by less than 200 %, for any given r. Similarly, the
maximum radial tensile stress S at the wall never varies by less than 200 %,. From a practical
viewpoint, a stress analysis based on the rigid wall assumption is on the safe side. The

effect of Poisson’s ratio varying from 0-25 to 0-30 is relatively small but becomes more
significant for thinner plates.

FiG. 3. Displacements of the surface of the elastic solid in the z-direction associated with applied stress
in Fig. 2.
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As expected, the deflection at the wall is small for thinner plates, while rotation at the
wall is still comparatively large.

There is little reason to believe that the trends indicated by this example would change
significantly for other usual loadings and geometries within the scope of the problem.

Also of interest is the behavior of the wall, particularly at the interface between the wall
and plate. The integral quantities of (12) or (13) represent the various displacements and
slopes due to a unit load S or T. The results of computation for the case where b/a = %,
v = (25 are displayed in Figs. 2-5. Decay of the solutions with increasing r values was
explored only for w(r, 0) and the results are given in Fig. 6.
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associated with applied stress in Fig, 2. FiG. 5. Slopes associated with Fig. 4.
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F1G. 6. Displacements in the z-direction of the plane = = 0 in the elastic solid associated with applied
stress in Fig. 2.

Acknowledgement—The authors wish to acknowledge helpful suggestions given by Dr. 1. S. Frame, Profesgor of
Mathematics at Michigan State University and those given by Dr. . N. Sneddon, Professor of Mathematics at
the University of Glasgow. Scotland.



Interaction of an axisymmetrically loaded plate with the elastic space 299

REFERENCES

[1] C. WEBER, The deflection of loaded gears and the effect on their load carrying capacity. Department of
Scientific and Industrial Research, Sponsored Research, Germany. Report No. 3, Part 1, England (1949).

[2] N. 1. MUSKHELISHVILL, Some Basic Problems of the Mathematical Theory of Elasticity, 3rd edition, p. 471.
Noordhoff (1953).

[3] W.J. O’DonneLL. The additional deflection of a cantilever due to the elasticity of the support. J. appl. Mech.
27, 461464 (1960).

[4] R. D. Cook. Deflections of a series of cantilevers due to elasticity of support. J. appl. Mech. 34, 760-761
(1967).

[5] J. M. Brown and A. S. HaLL. Bending of a circular shaft terminating in a semi-infinite body. J. appl. Mech.
29, 86-90 (1962).

[6] O. L. Bowik. Elastic stresses due to a semi-infinite band of hydrostatic pressure acting over a cylindrical
hole in an infinite solid. Q. appl. Math. 5, 100 (1947).

[7] C. J. TRANTER, On the elastic distortion of a cylindrical hole by a localized hydrostatic pressure. Q. appl.
Math. 4, 298-302 (1946).

[8] S. C. Das, On the elastic distortion of a cylindrical hole by localized axial shears on the inner boundary.
Ind. J. theor. Phys. 1, 41-46 (1953).

[9] K. A. BLENKARN and J. C. WILHOIT, Stresses due to a band of normal stress at the entrance of a circular
hole. J. appl. Mech. 29, 647-650 (1962).

[10] ). S. FRAME, Numerical Integration and the Euler—MacLauren Summation Formula. Michigan State Univer-

sity (1967).

(Received 17 October 1968 ; revised 12 May 1969)

AGcTpakT—Peltaercs 3akada, KacaroLIascs KPYrJIOrO AMCKA MIIM IUIACTHHKH, NPUKPENNEHHBIX K CTCHKE
HUJIHHAPHYECKOTO OTBEPCTBHS B OeCKOHEYHOM Tenie. PacnpepeneHue HanpsKEHWH MeEXIY ABYMS TDaHH-
YHBIMH MOBEPXHOCTAMH CPaBHUBAIOTCA ¢ OOBIKHOBEHHOM TeopHeil IIACTHHOK. YTOJI HaKJIOHA M IlepeMe-
INEeHHA NMOAXOIAT ONH3H CTEHKH, rie CepefUHHasi HOBEPXHOCTh IUTIACTHHKM NEPECEKAET HEOrPaHHYEHHOE
Tedo. 3ajaua pemraercs ANA Joboro clyvas OCECHHMETPHYECKOH HArpy3KH IUIACTHHKH, OJXHOMEPHOM
TOJIIIHHBI ¥ TAPAMETPOB MaTepHaja. MeTon MOXHO TaKXke IPHMEHHTB K IPYroMy JIroBoMy ocecHMMe-
TPHYECKOMY DELICHMIO TUIACTHHKE 6e3 yyera cun B cepequHHOM mosepxHoctu. ITopamMeTpbi Marepuaia
B IUIACTHHKE ¥ B IOAJIEPXHBAIOLIEM TejIe MOXHO ONPEHEITHTE HE3aBHCHMO. [Js ocobbix cityuaes,
nporubel MIACTHHKY NPH IOPEIIONOXECHAN XKECTKOH CTEHKH, KaK U B IIPOTUBOIOJIOJIOXHOCTH IIPH TIPEATIO-
JIOXEHHH TAKOTO XE CAMOTO MAaTEPHalia MIIACTHHKM M CTEHKH HHKOIZA HEe PasHATCS MeHee, 4yeM Ha 2009,
Pelnenue yka3biBaeT Ha TO, YTO PE3YJBTATHI MOJIYYEHHBIE MPU MCCICIOBAHHAX, MOIJMOBI 3HAYHTEILHO
U3MEHHTCH Ul CIIyJaeB APYTHX OOLIKHOBEHHBIX HArpy30K M IeOMETDHil, B PaMKax PaccMaTpHUBaeMol
3amayn.



